

What to Feynman was interference (see the previous post), to Erwin Schrödinger (he of the cat) was the phenomenon known as entanglement: the 'essence' of quantum mechanics. Entanglement is often portrayed as one of the most outlandish features of quantum mechanics: the seemingly preposterous notion that the outcome of a measurement conducted over here can instantaneously influence the outcome of a measurement carried out way over there.
Indeed, Albert Einstein himself was so taken aback by this consequence of quantum mechanics (a theory which, after all, he helped to create), that he derided it as 'spooky' action at a distance, and never fully accepted it in his lifetime.
However, viewing quantum mechanics as a simple generalization of probability theory, which we adopt in order to deal with complementary propositions that arise when not all possible properties of a system are simultaneously decidable, quantum entanglement may be unmasked as not really that strange after all, but in fact a natural consequence of the limited information content of quantum systems. In brief, quantum entanglement does not qualitatively differ from classical correlation; however, the amount of information carried by the correlation exceeds the bounds imposed by classical probability theory.